

Performance and Scalability of

Web Services Integration in
the Plumtree Corporate Portal

4.5

Project Final Report
Version 1.0

May 7, 2002
Prepared for: Plumtree Software

Table of Contents

TABLE OF CONTENTS.. 1

EXECUTIVE SUMMARY... 1

DEFINITIONS.. 2

PROJECT SUMMARY .. 3
PROJECT OVERVIEW .. 3
PROJECT GOALS.. 3
NON GOALS ... 4

TESTING ENVIRONMENT ... 5
HIGH-LEVEL OVERVIEW.. 5
HARDWARE AND SOFTWARE CONFIGURATION.. 6
SOFTWARE LOGICAL CONFIGURATION ... 8

Web server and Operating System Tuning Parameters .. 8
Plumtree Database... 9
Remote Gadget Web Services... 10

TESTING METHODOLOGY ... 13
ARCHITECTURE ASSESSMENT METHODOLOGY... 13
PERFORMANCE WORKLOAD DESIGN METHODOLOGY ... 14
PERFORMANCE METRICS AND DATA GATHERED .. 15

Remote Gadget Web Services per Page Latency Metric (WSPL)... 15
Remote Gadget Web Service Concurrently Accessed Latency Metric (WSCAL[n]) 16
Load Dependence of Portal Performance.. 17

TESTING RESULTS & ANALYSIS .. 18
Tests Varying the Number of Gadget Web Services per My Page.. 18
Tests Varying the Number of Gadget Web Services per Community Page 20
Tests Varying the Number of Gadget Web Services Concurrently Accessed for the My Page
.. 22
Tests Varying the Number of Gadget Web Services Concurrently Accessed for the
Community Page.. 24
Discussion of the Dependence of Response Time on Caching... 25
Discussion of the Dependence of Response Time on the Fixed Value of Load Used 27

CONCLUSION... 28

APPENDIX A: PORTAL SIDE REMOTE GADGET WEB SERVICE CACHING........................ 29

APPENDIX B: LOADRUNNER SCRIPT CODE.. 30

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 1

Executive Summary

A corporate portal is designed to aggregate services securely from enterprise applications across
the corporate network and the Internet. As corporate portals have grown in sophistication and
ambition, the services they must aggregate have become more complex. A single portal page
which several years ago might have contained links to company headlines now offers access to a
company’s most valuable electronic resources, including Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM), and Content Management systems.

The popularity of portals coincides with and feeds on the development of Web services. Broadly
speaking, a Web service is a programmatic component that is addressable remotely, typically
using the Internet-standard HTTP protocol. Increasingly, the components that make up users’
personalized portal pages will be generated by Web services. As the portal becomes a means by
which end-users consume Web services, it becomes increasingly important to ensure that the
portal can do so scalably and reliably.

The performance and scalability implications of aggregating many different services on a single
page have not been rigorously explored. The foremost challenge is response time. Since users
will not tolerate sluggish response times, a portal must deliver a page containing a large number
of services in less than a second. Since the portal aggregates systems whose speed and
reliability cannot be guaranteed, response times cannot be bottlenecked by slow services or
network latencies. Since a mature corporate portal may integrate hundreds or even thousands of
services, response time cannot degrade substantially as new services are added to the system. A
portal that spends a great deal of time waiting for components to process will bottleneck as more
users make requests, leading to serious scalability limitations.

The Plumtree Corporate Portal uses a messaging component known as the Parallel Portal
Engine to execute Gadget Web Services (the company’s term for remote services that include
user interface components) in parallel. Plumtree Software claims that the Parallel Portal Engine is
designed to avoid response time problems inherent in serial execution: each Web service will
take some time to respond; if each is accessed serially, the response time of the aggregate page
must be at least the total response time of each Web service. For example, if a user has 10 Web
services displayed on a personalized page and each gadget takes one half second to deliver
content, then the user will experience a minimum page response time of five seconds. With
parallel execution, the same page should return – at minimum – at the rate of the slowest Web
service, in this case one half second.

This test – the first independent test of Web services aggregation in a portal – was designed to
determine whether a portal can consume increasing numbers of Web services without degrading
performance. To conduct the test, the Plumtree Corporate Portal 4.5 and up to 1000 concurrently
integrated Gadget Web Services were used. The number of Web services the portal consumed
was varied in two ways: services were added to a page to determine whether aggregating
additional services on a page negatively impacted response time, and the number of Web
services concurrently utilized was also increased to ascertain whether the portal’s performance
degraded as the total number of services accessed by users increased.

It was determined that adding additional services to a personalized page increased the response
time by only 11 milliseconds per additional Web service, meaning that users can add Gadget
Web Services to their pages without experiencing appreciable performance degradation. It was
also found that additions to the total number of services concurrently utilized did not appreciably

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 2

affect response time. In conclusion, the Plumtree Corporate Portal 4.5 aggregates Web services
efficiently and scalably, in a manner that delivers consistent response time to end users.

Definitions

My Page: in the Plumtree Corporate Portal, a page composed of separate components – known
as Gadget Web Services – that the user chooses. This is the most commonly accessed type of
portal page.

Community Page: in the Plumtree Corporate Portal, a page shared by multiple portal users that
is composed of Gadget Web Services.

Web service: a programmatic component accessible to other programs over standard internet
protocols.

Gadget Web Service: a type of Web service specific to Plumtree Software that includes an
HTML or XML user interface component and is designed to be aggregated directly into a user’s
My Page or a Community Page. Sometimes abbreviated as “gadget.”

Gadget Server: in the Plumtree Corporate Portal, any server that outputs Gadget Web Services
to be consumed by one or more portal servers.

Concurrently Accessed Gadget Web Services (CAG): the number of Gadget Web Services
registered with the system that have been embedded in a My Page or Community Page for an
active user.

Number of Gadgets per Page (NGP): the number of Gadget Web Services embedded in a
particular My Page or Community Page.

Parallel Portal Engine (PPE): an HTTP-based messaging component of the Plumtree
Corporate Portal that orchestrates the execution of multiple remote Web services concurrently,
for eventual integration in a single Web page.

Vuser: in LoadRunner, a virtual user that simulates a browser and sends requests from it,
generating load on the server.

Vuser Pacing: in LoadRunner, a runtime setting specifying the time interval between script
iterations for each vuser.

Scenario: in LoadRunner, the scheduling and coordination of vuser activities.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 3

Project Summary

Project Overview

This project focused on testing and quantifying the characteristics of the Plumtree Corporate
Portal and its HTTP-based messaging component, the Parallel Portal Engine, for integrating
increasing numbers of personalized Gadget Web Services into a portal deployment. Response
time is the foremost challenge for a corporate portal deployment that integrates a large number of
services on a single page. Since users will not tolerate sluggish response times, a portal must
deliver a page containing a large number of services in less than a second. Since the portal
aggregates systems whose speed and reliability cannot be guaranteed, response times cannot
be bottlenecked by slow services or network latencies. Since a mature corporate portal may
integrate hundreds or even thousands of services, response time cannot degrade substantially as
new services are added to the system. Plumtree Software claims that its Parallel Engine solves
these problems by orchestrating remote services for execution in parallel, but these claims have
not been measured or independently verified, leaving an important question about portal
scalability unanswered.1 An implicit goal in the project was thus to establish two new metrics for
measuring and reporting the scalability of portals: the number of services integrated and in use by
portal users with negligible performance impact, and the number of dynamic services which can
be accessed by one personalized page with negligible performance impact.

Project Goals

The business and strategic objective for the Plumtree Corporate Portal 4.5 Web services
benchmark was to demonstrate the scalability and performance of parallel orchestration of
remote services in general, and of Plumtree’s Parallel Portal Engine in particular.

The technical objective of this project was focused on benchmarking performance characteristics
of a single Plumtree Corporate Portal 4.5 hardware configuration and systematically changing the
number of Gadget Web Services in use by the system as well as the number of Gadget Web
Services accessed concurrently per user. The main objectives were to:

• Determine the baseline performance characteristics of a portal system with no Gadget
Web Services deployed and a large number of users;

• Determine the performance characteristics of the same portal system with many Gadget

Web Services deployed when different numbers of Gadget Web Services were accessed
by users;

1 Two white papers have previously been published on the scalability of the Plumtree Corporate Portal. The
first, published by Dell Corporation’s Application Solutions Center, established that hits per second is the
proper metric for characterizing load on a portal, and that the Plumtree Corporate Portal scales linearly when
additional Web servers are added to a server farm running Dell’s Intel-based servers. The second, published
by the Microsoft Technology Center, established that the Plumtree Corporate Portal’s database, running
SQL Server 2000 on Intel OEM hardware, could accommodate one million named users with acceptable
performance.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 4

• Determine the baseline performance characteristics of a portal system with a large
number of users, each of whom accesses one Gadget Web Service on his personalized
page; and

• Determine the performance characteristics of the same portal system with the same

number of users, each of whom accesses different numbers of Gadget Web Services on
his personalized page.

These goals were measured by showing acceptable response time dependence as well as
system stability (processor utilization, network utilization, available memory, and other relevant
system resources) under sustained load as test parameters were varied.

Non Goals

Since multiple Web server scale-out and database scale-up to hundreds of thousands of users
have been demonstrated in earlier tests, we focused this test explicitly on testing scaling up the
number of Web services integrated into the portal environment. Readers interested in metrics
such as the number of hits a portal Web server can sustain or the number of users a portal can
serve should consult earlier studies.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 5

Testing Environment

High-Level Overview

The Plumtree Corporate Portal 4.5 server farm environment was duplicated in the Intel Solution
Services Integration Lab located in Santa Clara, CA. Figure 1 is a high-level illustration of the
testing environment.

Figure 1: Overview of Testing Environment

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 6

Hardware and Software Configuration

The Plumtree Corporate Portal 4.5 server farm was implemented in a testing environment
comprising eighteen Intel Architecture-based servers. Although generic Intel Architecture based
servers were used during testing, similar results presented in this document were expected if
comparable OEM servers were implemented.

Two servers acted as load generation clients and were required to produce the necessary
workload applied to the Plumtree Corporate Portal 4.5 server. Another server acted as the
controller for the load generation clients and captured Microsoft Windows Performance Monitor
data. The following are hardware and software details for these servers:

• Hardware
o Four Intel Pentium III Xeon 700 MHz processors
o 4 GB SDRAM
o (2) 9 GB SCSI Hard Disk
o (1) 10/100 Network Interface Card

• Software
o Microsoft Windows 2000 Advanced Server with Service Pack 2
o Mercury Interactive LoadRunner 7.5

One server was used as the Web server for the Plumtree Corporate Portal 4.5 Web application.2
The following are details for the Web server:

• Hardware

o Four Intel Pentium III Xeon 700 MHz processors
o 1.5 GB SDRAM
o (2) 18.2 GB SCSI Hard Disk

• Software
o Microsoft Windows 2000 Advanced Server with Service Pack 2
o Plumtree Corporate Portal 4.5 Web Application

One server was used as the database server running Microsoft SQL Server 2000 Enterprise
Edition. The following are details for the database server:

• Hardware
o Eight-processor
o Intel Pentium III Xeon 700 MHz
o 8 GB SDRAM
o (2) 9 GB SCSI Hard Disk

• Software
o Microsoft Windows 2000 Advanced Server with Service Pack 2
o Microsoft SQL Server 2000 Enterprise Edition with Service Pack 2

2 Since scale-out and the total sustainable throughput of the server farm were not at issue, we did not deploy
load-balanced Plumtree Portal Servers. Earlier tests demonstrate linear scalability in the presence of load-
balanced portal servers.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 7

One server was used as the Plumtree File/Image server. The following are details for the
File/Image server:

• Hardware
o Two Intel Pentium III Xeon 700 MHz processors
o 512 MB SDRAM
o (2) 9 GB SCSI Hard Disk

• Software
o Microsoft Windows 2000 Advanced Server with Service Pack 2
o Plumtree Shared Information Server

One server was used as the LDAP server running iPlanet Directory Server v4.13. The following
are details for the LDAP server:

• Hardware
o Two Intel Pentium III Xeon 700 MHz processors
o 512 MB SDRAM
o (2) 9 GB SCSI Hard Disk

• Software
o Microsoft Windows 2000 Advanced Server with Service Pack 2
o iPlanet Directory Server v4.13

Lastly, ten systems were used as generic Gadget Servers. The following are details for these
servers:

• Hardware
o One Intel Pentium III 933 MHz Processor
o 256 MB SDRAM
o (1) 9 GB IDE Hard Disk

• Software
Microsoft Windows 2000 Advanced Server with Service Pack 2

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 8

Software Logical Configuration

In this test, there are three principal variables to the software configuration: the Plumtree Portal
Web Server and operating system tuning parameters, the Plumtree database logical
configuration, and the characteristics of the remote Gadget Web Services being integrated into
the portal.

Web server and Operating System Tuning Parameters

Operating System Tuning

• Network Service Optimization:
o Location on Microsoft Windows 2000 Advanced Server: Right Click – Properties

on “My Network Places” >> Right Click – Properties on the particular network
interface >> Properties on File and Printer Sharing for Microsoft Networks
� For Databases, Web Servers, and Job Servers, set this to Maximize

data throughput for network applications
� For the Shared Files, set this to Maximize data throughput for file

sharing
• Disable Foreground Application Performance Boost

o Microsoft Windows 2000 Advanced Server: System Properties Control Panel >>
Advanced >> Performance Options. Set it to optimize performance for
Background services

• NIC Receive Buffers (this may not exist on your system)
o Microsoft Windows 2000 Advanced Server: Right Click – Properties on “My

Network Places” >> Right Click – Properties on the particular network interface
>> Configure >> Advanced >> Receive Buffers. Set to 256

• MaxUserPort
o Add registry value MaxUserPort, if it’s not already there, to

HKLM\System\CurrentControlSet\Services\TcpIp\Parameters and set it to 0xfffe
(65534)

IIS Tuning
General Tuning:

• Enable Buffering for ASP Applications in the IIS MMC. (Plumtree Virtual Directory
Properties >> Virtual Directory >> Configuration >> App Options)

• IIS Web-Site Performance Bar set to More Than 100,000 (IIS MMC >> Right Click –
Properties on the Web Site containing the Plumtree Virtual Directory >> Performance
Tab)

• Set ASPProcessorThreadMax (Microsoft Windows 2000 Advanced Server). In general,
this does not need to be changed for Microsoft Windows 2000 Advanced Server (it
defaults to a value of 25).

• Set AspScriptEngineCacheMax to the value of ProcessorThreadMax multiplied by the
number of processors in the system plus one. For instance, if there are four processors
and ProcessorThreadMax is set to 25, then it should be set to 125 = [25 * (4 +1)]. This
is set through the Number of Script Engines Cached setting (in IIS MMC >> Plumtree
Virtual Directory properties >> Virtual Directory >> Configuration >> Process Options)

• Set the Script File Cache to Cache all requested ASP files (IIS MMC >> Plumtree
Virtual Directory properties >> Virtual Directory >> Configuration >> Process Options)

• The Indexing service is turned off. Additionally, turn off Windows Indexing of the virtual
directory (IIS MMC >> Plumtree Virtual Directory properties >> Virtual Directory >>
Uncheck “Index this resource”).

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 9

Scalability Testing Specific Tuning:
• Set the Session Timeout to be 120 minutes. (This prevents sessions from timing out

during one test run.)

Plumtree Database

The Plumtree database was configured before testing began. The database was populated to
simulate an environment representative of a production portal system. There were 19000 distinct
users in the system, divided into 19 groups of 1000 users each. Each group was imported from,
and authenticated to, an iPlanet LDAP system. There were 3805 remote Gadget Web Services
registered in the system, 19000 distinct My Pages, 1010 distinct communities, and 11415 distinct
sets of user preferences.

Each user group was used for different tests and included users with different profiles. Each user
had one My Page. Each user was in one community that had the same profile as the user’s My
Page. Users in each group had a specific number of gadgets on their My Pages and community
pages. Each group used a specific number of gadgets in total. This configuration was created by
using a specific number of distinct profiles for each group. This was done to keep the database
configuration constant through the tests, thereby making the results comparable because
database changes are not a factor. Table 1 below describes the user profiles of the different
groups.

Group Name
Number of Gadgets

per My Page and
Community Page

Total Number of
Gadgets Utilized by

Group
Number of Distinct

User Profiles in Group

01 1 1 1
02 2 2 1
03 3 3 1
04 4 4 1
05 5 5 1
06 6 6 1
07 7 7 1
08 8 8 1
09 9 9 1
10 10 10 1

02_50 2 50 25
02_200 2 200 100
02_1000 2 1000 500

05_50 5 50 10
05_200 5 200 40
05_1000 5 1000 200

10_50 10 50 5
10_200 10 200 20
10_1000 10 1000 100

Table 1: User Group Configuration

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 10

The first column in the table is the name of the user group. The second column shows the
number of Gadget Web Services that each member of the group has on both his My Page and
his community page. The third column shows the total number of distinct Gadget Web Services
utilized by members of the group. The fourth column shows the number of distinct user profiles
used in that group.

There were 10 gadget server objects in the system. The number of a gadget on the page
determines which gadget server object the Gadget Web Service utilizes. For example, the first
gadget on a user’s page utilizes gadget server object 1, and the second gadget on a user’s page
utilizes gadget server object 2. Each gadget server object represented a different physical gadget
server computer.

To simulate the most demanding possible conditions, in most tests no Gadget Web Services
were cached by the portal; all content is fresh.3 Caching was eliminated to ensure that each
Gadget Web Service actually had to execute – and thereby introduce latency -- to generate a
result. Had caching been employed, it would have been impossible to determine the efficacy of
the parallel processing architecture, since some services would effectively generate their content
instantaneously. This also models dynamic Web services that may have their own caching,
independent of the portal. For comparative purposes, some background tests using different
cache settings were run by setting different Gadget Web Services to use caching. See Appendix
A for a discussion of these tests.

Remote Gadget Web Services

A remote Web service (or Web service generally) is remote application logic accessible via
standard Web protocols. A remote Gadget Web Service is a Web service that returns user-facing
content to be aggregated in a personalized portal page. In other words, Gadget Web Services are
designed for user interaction and typically contain an HTML-based user interface4. The tests
conducted utilize a remote Gadget Web Services model. The Gadget Web Services are
categorized using the following quantities:

1. Average Web Service Latency (AWSL). AWSL is the average time from the last byte of the

service request sent to the last byte received of the Web service response. It will be a
combination of the time the Web service takes to process on the remote server and the time
the request from and response to the portal server takes to travel over the network.

2. Average Web Service Response Size (AWSRS). AWSRS is the average size, in bytes, of
the Web service request response.

3. Average Number of Personalization Preferences (ANPP). ANPP is the average number
of personalization preferences sent to the Web service as part of a request. Gadget Web
Services typically contain personalization preferences that determine how the Web service
presents itself to end users. Preferences may be scoped for a single user, a community, or
the portal as a whole. Examples of possible preferences are user authentication information
or output format preferences.

Note that there are many other variables to consider when a Web service is integrated into the
portal, including: language used to code the Web service, operating system and runtime

3 The Plumtree Corporate Portal contains built-in caching algorithms. In most cases, Plumtree recommends
that caching be used to improve performance.
4 Gadget Web Services may contain other types of user interfaces, including XML. These are used much
less often than HTML in production because it is typically more scalable to accomplish data transformations
remotely on the Gadget Web server.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 11

environment of the Web service, processing load on the Web service’s host computer, type of
user preference, and so on. These parameters are not relevant to this test; the quantities used to
characterize Gadget Web Services are sufficient to model performance characteristics.
Additionally, latency in the tests was normalized to simulate realistically the total latency that
could accrue from these variables.

The test configuration models typical, realistic aggregations of remote Web services for corporate
portals. To accomplish this goal, we can envision several different classes of Gadget Web
Services:

1. Enterprise Class Web Service Frameworks (ECWSF). These Web services are highly
configurable services that integrate enterprise applications such as e-mail and CRM
systems. They typically have multiple user preferences.

2. Legacy System Integration Web Services (LSIWS). These Web services present a
Web interface for legacy applications or data warehouses. They require less computation
than Enterprise Class Web service Frameworks.

3. Simple Database Web Services (SDWS). These Web services present a Web interface
for simple database queries, such as personalized links or simple poll results.

4. Simple Web Services (SWS). These Web services present basic information such as
weather, stock quotes, news feeds, welcome messages, announcements, and screen-
scraped intranet sites.

The Average Web service Latency characteristic can be discussed in light of the above functional
classes of Web services. A model Web service with a large latency could be an Enterprise Class
Web service Framework or legacy system integration Web service, which perform complex tasks
or integrate with slow back-end systems. Simple Web services on slow networks could also
cause large latencies; for example, a news feed might be transmitted over the Internet or a slow
WAN. Latency could also be introduced by a simple database Web service with a slow backend
database or a slow intranet connection; for example, a database with a billion rows might return
even simple queries rather slowly.

Any realistic test of Web services aggregation must take into account Web service latency. As the
above explanation demonstrates, a Web services architecture must contend with many different
sources of latency. Cached or zero-latency services would not create a realistic test scenario for
the integration of enterprise applications or distributed Web services.

The Gadget Web Service used in this test, the WaitGadget, is a model representing an average
Gadget Web Service in use. It is characterized by the following parameters:

1. The AWSL is 500 milliseconds, with a variation between 475 and 525 milliseconds
2. The AWSRS is 2 KB.
3. The ANPP is 3; each user has three preferences for each gadget.
4. No Portal caching is used; fresh content is delivered for every user request.

The response time of 500 milliseconds is reasonable for complex Gadget Web Services or
services accessed via a slow connection. The response size of 2 KB is reasonable for Gadget
Web Services with formatting and javascript. The number of preferences used is typical: one
preference for identification or authentication, one preference for specifying data location or
repository, and one preference for specifying formatting information.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 12

The WaitGadget used was written in Active Server Pages using a COM component to generate
the delay. The programming language and runtime environment are inconsequential in this test;
the Web service might have been written in Java or C#.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 13

Testing Methodology

Architecture Assessment Methodology

Intel Solution Services implements a straightforward methodology for architecture assessment
and is illustrated in Figure 2.

Figure 2: Intel Solution Services’ Architecture Assessment Methodology

After the infrastructure was setup and validated in the Santa Clara Intel Solutions Center, the
Plumtree team worked to research, design, develop, and validate a workload to use for stress
testing the Plumtree Corporate Portal 4.5 server farm configuration (details are presented under
Workload Design Methodology in this section). Once an appropriate workload was validated,
baseline performance metrics were gathered. After baseline metrics were gathered, an iterative
process of gathering data, analyzing the data, modifying the solution, and validating the
modification was completed several times (all testing data are presented in the Testing Results
section of this document).

This methodology helped ensure that all architecture changes made to the solution were
validated and that the exact performance impact of each modification was recorded.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 14

Performance Workload Design Methodology

The Plumtree and Intel Solution Services team worked together to research, design, develop, and
validate an appropriate workload that satisfied four requirements:

• Representative;
• Measurable;
• Static; and
• Repeatable.

The most important characteristic of a workload is that it must be representative. This means that
the workload must simulate a load that closely mimics that found in the production environment.
Secondly, the workload must be measurable which implies that it allows metrics to be measured
during the application of the workload. Next, the workload must be static, which means the
workload is stable enough to allow the solution to be measured. Lastly, the workload must be
repeatable. A repeatable workload implies that successive test runs will apply the exact same
load to the solution infrastructure. This allows for accurate comparison of metrics between these
runs, which is critical for determining the effects of tuning and architecture modifications.

LoadRunner 7.5 with 1000 virtual users, all running the same script, was used to generate the
load. The configuration section above specifies the distribution of client machines and the
network configuration. The virtual users were distributed evenly over the client machines.

Two test users were configured to validate the absence of specific errors: a general portal or
Gadget Web Service error, and a timeout error. None of these errors was encountered during test
runs. Response code errors and Web server errors were monitored and logged automatically by
the tool. None of these errors was encountered during test runs.

For the purposes of this test, we focused on My Pages and Community Pages, not searches or
browsing of the portal’s Document Directory, since My Pages and Community Pages integrate
Gadget Web Services while search and browsing do not. LoadRunner virtual users (vusers) were
initialized before testing began by logging in to the portal as different portal users in the user
group relevant for the test. To avoid the creation of an unrealistic bottleneck from the LoadRunner
testing scenario, no more than 20 users were initialized at once. Runtime settings were set so
that vusers ignored think times, so that vuser pacing determined the load.

The action of the script was a refresh of a personalized page, either the My Page or the
Community Page, whichever was relevant for the test run. The LoadRunner script used is
included in Appendix B at the end of this document. The number of users actively running was
ramped up at a rate of 25 users every 15 seconds until all 1000 vusers were accessing the
system. The LoadRunner testing script was run repeatedly for 20 minutes after ramp-up was
complete. The pacing of the vusers refreshing their personalized page was set at between 42 to
47 seconds each iteration. This leads to an average load of 22.5 hits/sec on the portal, with a
variation of 0.3 hits/sec during steady state.

The script used models a real world scenario as well as isolating the system’s performance based
on responses to a particular user action. Users are expected to refresh their personalized page
repeatedly to view updated content and to utilize interactive Gadget Web Service functionality.
Additionally, many users employ the portal as a Web desktop, setting their portal pages to refresh
automatically in the background after a fixed amount of time.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 15

The load generated is typical of average peak loads per server for real deployments. To ensure
stability and allow for extreme spikes, system architects typically plan for about 30 to 40 percent
processor utilization at peak loads, depending on particular company policy.

The case tested was constructed so that the bottleneck in performance is the portal server rather
than the network or the database. Given fixed load and configuration, as well as a high-end
database and fast 100 Base-T network, the latencies due to network lag and database interaction
are constant across tests, and negligible. By subtracting a baseline latency from test results, the
effects of these factors on the data is removed. The absolute response time data shows that
these factors account for at most 100 milliseconds, out of the baseline response time with one
WaitGadget included.5 The network delays were measured to be below 10 milliseconds and the
database response times were under 20 milliseconds during calibration runs. There are two
database calls per page, so this accounts for about 50 milliseconds of latency.

To ensure a controlled test, the Internet Information Server was restarted between each testing
run.

Performance Metrics and Data Gathered

The following are a list of the unique pages that were requested in the workload and reflect the
transaction names within the LoadRunner script:

• My Page
• Community Page

Three key performance metrics were extracted from the LoadRunner data for each of these
pages/transactions:

• Response time of transaction
• Processor utilization on the portal server
• Hits/sec on the portal server

Each scenario was monitored for errors, and none produced any errors during data collection.

Data was collected and averaged at a static load between 18 and 27 minutes into the test. This is
approximately 5 minutes after the completion of ramp-up.

Remote Gadget Web Services per Page Latency Metric (WSPL)

Web Services per Page Latency (WSPL) is defined as the average response time increase of a
personalized portal page that integrates and aggregates multiple remote Gadget Web Services
(which were defined in the Software Configuration section of this document) as the number of
Gadget Web Services increases from one to ten. The system on which WSPL is measured must
use the hardware specified in the Hardware Configuration section. The scenario used to measure
response time of the personalized portal page must be the scenario specified in the Performance
Workload Design Methodology section.

5 Of interest, but not directly relevant to the test, is the baseline response time with the WaitGadget cached –
in other words, without the latency created by the WaitGadget. We found this response time to be 83
milliseconds.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 16

The implicit baseline definition is the response time of a personalized portal page integrating one
remote Gadget Web Service.

WSPL has units of milliseconds per Gadget Web Service integrated.

If the increase in portal personalized page response time per additional remote Gadget Web
Service integrated is linear, then WSPL is the slope of the graph of the difference from baseline
response time of the portal personalized page response time versus the number of Gadget Web
Services integrated minus one, from zero to nine. If the graph is non-linear, then WSPL may have
strong dependence on the number of Gadget Web Services aggregated, but can be computed.

Web Services per Page Latency is a key metric characterizing the scalability and performance of
a portal. A loosely coupled Web services architecture has clear advantages for portal system
design; because remote Web service code is isolated from portal computers, problems with
remote Web services do not affect the portal computers directly, remote Web services do not
consume portal computer resources, and software interaction incompatibilities which could arise if
multiple Web services were co-located are avoided.

However, the loose coupling of remote Gadget Web Services poses the technical problem of
portal response time. The portal must be able to integrate and aggregate remote Gadget Web
Services located in different networks and taking an unknown time to respond to requests. If the
portal does not integrate and aggregate remote Gadget Web Services effectively, these network
and process delays could all add up to make portal personalized page response time
unacceptable for users. Eventually, the portal will queue up such a large volume of requests that
its ability to scale to a large number of end-users will be compromised.

WSPL is defined to cleanly characterize the performance cost of integrating dynamic remote
Gadget Web Services which deliver fresh content and application access to the user. These
types of Web services are the most useful to business users, and so are likely to be the most
widely utilized in a real system. Examples of remote Gadget Web Services in this class are e-mail
inboxes and discussion databases. The Web services will have internal caching, but the portal
cannot cache content from these types of services without compromising utility unacceptably.

Fixing the hardware used and load applied isolates performance measurements from direct scale
measurements. The system is designed so that the portal server latency should be the bottleneck
for any portal tested, and the tests are designed to create a baseline from which we can compare
performance as additional services are added to the system. By fixing the scale – number of
users and number of hits per second – to create a baseline, and ensuring that network or other
external latencies will not bottleneck the system and are constant across test runs, we have
ensured that the result is generally applicable, reproducible, and comparable.

The tests run calculate WSPL for the Plumtree Portal My Page by using tests 01, 02, 03, 04, 05,
06, 07, 08, 09, and 10 to measure Portal My Page response times for My Pages integrating one
to ten remote Gadget Web Services. The Plumtree Portal Community page was also tested, to
show that its behavior is comparable to the My Page WSPL.

Remote Gadget Web Service Concurrently Accessed Latency Metric (WSCAL[n])

Web services Concurrently Accessed Latency (WSCAL[n]) is defined as the average response
time increase of a personalized portal page with n aggregated Gadget Web Services where n is
greater than one, as the number of Gadget Web Services concurrently utilized by the portal
increases from fifty to one thousand. The system on which WSCAL[n] is measured must use the
hardware specified in the Hardware Configuration section. The scenario used to measure

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 17

response time of the personalized portal page is the scenario specified in the Performance
Workload Design Methodology section.

The implicit baseline definition is the response time of a personalized portal page with n
aggregated remote gadgets with fifty remote gadgets concurrently utilized.

WSCAL[n] has units of milliseconds per remote Gadget Web Services concurrently utilized.

An important metric of portal scalability is the system’s ability to scale out the total number of
remote Web services utilized without response time degradation. Response times unacceptable
to users could arise because of technical scalability difficulties, such as excess processor
utilization on the portal server in managing many more Web service connections, or technical
latency problems, such as inefficient processing of Web service interactions. The total number of
Web services registered with the system – but not concurrently utilized by users – could affect the
latency, but this is likely to be a data layer problem only; database calls can be optimized to
remove this bottleneck. Because WSCAL[n] measures Web services being concurrently utilized
by users, it targets the main risk area of portal page response times. It is thus the key metric for
demonstrating portal scalability as remote Web services are added to the system.

Showing that the WSCAL measurements for different values of n is the same validates that the
metric is independent of the number of remote Gadget Web Services aggregated per portal page.
If WSCAL[n] has significant dependence on the value of n, the portal cannot truly scale for large
numbers of concurrently accessed Web services, because different users can choose personal
settings which cause unacceptable portal response times.

Fixing the hardware, load, and number of aggregated remote Gadget Web Services per page
isolates the dependence on the number of remote Gadget Web Services concurrently accessed.

The tests run measure WSCAL[n] for the Plumtree Portal My Page for n values of 2, 5, and 10.
Tests 02_50, 02_200, 02_1000, 05_50, 05_200, 05_1000, 10_50, 10_200, and 10_1000 were
used. Tests measuring WSCAL[10] for the Plumtree Portal Community page, using tests 10_50,
10_200, and 10_1000, were run to validate that Community Page measurements are comparable
to My Page measurements.

Load Dependence of Portal Performance

The metrics collected require a fixed load that models real world average peak load per portal
server to remove load dependence from the performance metrics. To ensure that the tests were
generally applicable, tests were conducted to determine the sensitivity of portal performance to
changes in applied load. A modified version of the scenario described previously which ramped
up vusers at the same rate but had a much faster user pacing – thereby generating more hits per
second – was run, to the point where the portal server’s processor utilization was saturated. As
long as the portal server is utilized below the saturation level, performance does not change
dramatically at different load levels; it changes at most a few hundred milliseconds, and for loads
utilizing less than 70% processor utilization, it changes less than 100 milliseconds. Tests 01 and
10 were run with this faster user pacing.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 18

Testing Results & Analysis

All the results from the testing of the Plumtree Corporate Portal 4.5 server farm configuration are
presented in this section. Detailed descriptions of each architecture change are followed by the
performance metrics gathered and listed in the Testing Methodology: Performance Metrics and
Data Gathered section of this document.

Tests Varying the Number of Gadget Web Services per My Page

Average gadget response time was set to 500 milliseconds. The response time measured for a
test run is the base 500 milliseconds for the Gadget Web Service plus a baseline overhead of the
personalized page plus the latency due to the number of Gadget Web Services aggregated per
page. Using the response time of a personalized page with one Gadget Web Service as a
baseline isolates the performance changes due to the aggregation of additional Gadget Web
Services. This baseline response time was measured to be 582 milliseconds.6 The standard
deviation of this mean was computed to be 2 milliseconds.

Table 2 below shows the data collected for each test run. Figure 3 on the following page shows
the latency changes from the baseline as the number of Gadget Web Services aggregated per
page is changed.

Test Name
(Number of Gadgets

per My Page)
Response Time

(ms)
Response Time
Difference From

Baseline (ms)
% Total Processor

Utilization

01 582 +/- 2 0 23%
02 592 +/- 1 10 +/- 2 25%
03 605 +/- 1 23 +/- 2 28%
04 618 +/- 1 35 +/- 2 31%
05 628 +/- 1 46 +/- 2 31%
06 640 +/- 1 58 +/- 2 36%
07 650 +/- 1 67 +/- 2 38%
08 660 +/- 2 77 +/- 3 42%
09 668 +/- 2 86 +/- 3 48%
10 678 +/- 2 95 +/- 3 45%

Table 2: Data for Tests Varying Number of Web services per My Page

Error estimates are the standard deviation of the mean. The load (hits/sec) on the portal server is
kept constant at 22.5. A distribution of 0.3 hits/sec is built into the vuser pacing, and the standard
deviation of the mean is measured to be within 0.2 hits/sec.

6 It is important that this figure not be understood as the minimum response time for a personalized page.
The 500 milliseconds latency built into the single Gadget Web Service on the page means that 500
milliseconds is the theoretical fastest response time for this page.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 19

Figure 3: Response Time Differences in Milliseconds vs. Number of Gadget Web Services per My Page over Baseline of
One Gadget

An X-value of 0 means there was one gadget on the My Page; this is the baseline. An X-value of
9 means that there were 10 gadgets on the My Page. Also shown is the graph of the best linear fit
(least squares) to the data. The r-squared value for the fit is 0.9961. The slope of the best-fit line
is 10.6 +/- 0.3 ms/gadget.

WSPL is calculated to be 10.6 +/ 0.3 ms per gadget web service integrated.

The data shows that the performance impact of adding another gadget to a personalized page is
constant and negligible. A constant performance impact per additional gadget added means that
the My Page can be personalized arbitrarily by users with predictable, stable results that scale for
large numbers of gadgets per page. A performance impact of 10.6 milliseconds per aggregated
gadget is negligible to users because users will not be aware of response changes less than a
few hundred milliseconds.

Additionally, the absolute response times show that the performance overhead of the My Page is
negligible to end users. Subtracting the 500 milliseconds theoretical minimum response time of

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 20

the My Page from the measured response times shows that the latency due to the My Page and
the network total less than 200 milliseconds for all measurements.

Tests Varying the Number of Gadget Web Services per Community Page

Average gadget response time was set to 500 milliseconds. The response time measured for a
test run is the base 500 milliseconds for the Gadget Web Service plus a baseline overhead of the
personalized page plus the latency due to the number of Gadget Web Services accessed. Using
the response time of a personalized page with one Gadget Web Service as a baseline isolates
the performance changes due to the aggregation of additional gadget web services. This baseline
response time was measured to be 622 milliseconds.7 The standard deviation of this mean was
computed to be 1 millisecond.

Table 3 below shows the data collected for each test run. This table shows the latency changes
from the baseline as the number of Gadget Web Services aggregated per page is changed.
Figure 3 on the following page shows a graph of the response time difference data for the
Community Page.

Test Name
(Number of Gadgets

per Community Page)
Response Time (ms)

Response Time
Difference From

Baseline (ms)
% Total Processor

Utilization

01 622 +/- 1 0 32%
02 636 +/- 2 14+/- 2 36%
05 674 +/- 2 53 +/- 1 40%
10 731 +/- 1 109 +/- 3 59%

Table 3: Data for Tests Varying Number of Web services per Community Page

Error estimates are the standard deviation of the mean. The load (hits/sec) on the portal server is
kept constant at 22.5. A distribution of 0.3 hits/sec is built into the vuser pacing, and the standard
deviation of the mean is measured to be within 0.2 hits/sec.

7 It is important that this figure not be understood as the minimum response time for a personalized page.
The 500 milliseconds latency built into the single Gadget Web Service on the page means that 500
milliseconds is the theoretical fastest response time for this page.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 21

Figure 4: Response Time Differences in Milliseconds vs. Number of Gadget Web Services per Community Page over
Baseline of One Gadget

An X-value of 0 means there was one Gadget Web Service on the Community Page; this is the
baseline. An X-value of 9 means that there were 10 gadgets on the Community Page. Also
shown is the graph of the best linear fit (least squares) to the data. The r-squared value for the
best-fit line is 0.9976. The best-fit slope is 12 ms/gadget.

WSPL for the Community Page is measured to be 12 milliseconds per Gadget Web Services
integrated.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 22

The data shows that over the range tested, the response time difference vs. number of gadget
webs services per Community Page over the baseline is linear, and that each additional gadget
per Community Page causes a 12 milliseconds response time increase. This value is the same
as the corresponding value for My Page to within error estimates.

This means that even for ten gadgets per Community Page, the response time increase due to
aggregating additional dynamic web services is negligible, and the same as for the My Page.

Tests Varying the Number of Gadget Web Services Concurrently Accessed for the My
Page

Average gadget response time was set to 500 milliseconds. The response time measured for a
test run is the base 500 milliseconds for the Gadget Web Service plus a baseline overhead due to
the personalized page plus a latency factor depending on the number of Gadget Web Services
aggregated per My Page and the number of Gadget Web Services concurrently accessed. The
response time differences for different numbers of concurrently accessed web services, for fixed
values of the number of Gadget Web Services aggregated per My Page, are data which isolate
the latency due to integrating different numbers of Gadget Web Services.

Number of Gadgets
per My Page

Number of
Concurrently Accessed

Web Services
Response
Time (ms)

% Total Processor
Utilization

2 50 597 +/- 2 25%
2 200 597 +/- 2 21%
2 1000 599 +/- 3 22%
5 50 630 +/- 2 33%
5 200 628 +/- 2 34%
5 1000 629 +/- 2 35%
10 50 686 +/- 2 47%
10 200 690 +/- 3 48%
10 1000 687 +/- 3 49%

Table 4: Data for Response Time and %Total Processor Utilization Dependence on Number of Concurrently Accessed

Gadget Web Services for different numbers of Gadgets per My Page

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 23

Figure 5: Response Time vs. Number of Concurrently Accessed Gadgets for Three Fixed Values of Number of Gadget
Web Services aggregated per My Page

Response time differences for each data series are zero to within error estimates.

The response time differences for tests with 50, 200, and 1000 concurrently accessed web
services, for each value of the number of gadget web services per My Page, are the same to
within error estimates. That is, WSCAL[2], WSCAL[5], and WSCAL[10] are zero milliseconds per
gadget web service concurrently utilized and independent of n. The data shows that, for a fixed
number of gadgets per My Page and a fixed load, the My Page response time does not depend
on the number of concurrently accessed Gadget Web Services.

This means that at least 1000 Gadget Web Services than can be added to the portal system
without impacting performance, so that the Portal system can scale for future expansion without
modification.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 24

Tests Varying the Number of Gadget Web Services Concurrently Accessed for the
Community Page

Average gadget response time was set to 500 milliseconds. The response time measured for a
test run is the base 500 milliseconds for the Gadget Web Service plus a baseline overhead due to
the personalized page plus a latency factor depending on the number of Gadget Web Services
aggregated per Community Page and the number of Gadget Web Services concurrently
accessed. The response time differences for different numbers of concurrently accessed web
services, for fixed values of the number of Gadget Web Services aggregated per Community
Page, are values which isolates the latency due to integrating different numbers of Gadget Web
Services.

Number of Concurrently Accessed
Web Services Response Time (ms) % Total Processor

Utilization
50 740 +/- 3 57%

200 743 +/- 3 59%
1000 750 +/- 1 60%

Table 5: Data for Response Time and %Total Processor Utilization Dependence on Number of Concurrently Accessed

Gadget Web Services for Ten Gadgets per Community Page

The response time differences for tests with 50, 200, and 1000 concurrently accessed web
services are the same to within error estimates. That is, WSCAL[10] for the Community Page is
zero—the average is 0.01 milliseconds per gadget web service concurrently utilized. The data
shows that, for ten gadgets per Community Page and a fixed load, the Community Page
response time does not depend on the number of concurrently accessed Gadget Web Services.
The data shows that the Community Page performs similarly to the My Page.

This validates that at least 1000 Gadget Web Services than can be added to the portal system
without impacting performance, so that the Portal system can scale for future expansion without
modification.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 25

Discussion of the Dependence of Response Time on Caching

Average gadget response time was set to 500 milliseconds. The response time measured for a
test run is the base 500 milliseconds for the Gadget Web Service plus a baseline overhead of the
personalized page plus the latency due to the number of un-cached Gadget Web Services
aggregated per My Page, plus the latency due to the number of cached Gadget Web Services
aggregated per My Page. The response time differences for different numbers of un-cached
gadget web services per My Page are data which isolate the latency due to integrating cached vs.
un-cached Gadget Web Services.

Number of Un-
Cached Gadgets

per My Page

Number of Cached
Gadgets per My

Page
Average My Page

Response Time (ms)
% Total Processor

Utilization

0 10 83 +/- 1 39%
1 9 633 +/- 2 37%
2 8 646 +/- 2 43%
5 5 661 +/- 3 45%
7 3 672 +/- 2 45%

10 0 678 +/- 2 45%

Table 6: Average My Page Response Time Data for Ten Fixed Gadgets per My Page By the Number of Un-cached
Gadgets per My Page

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 26

Figure 6: My Page Response Time vs. Number of Uncached Gadgets per Page

The results from Table 6 are plotted above, except the case of no un-cached gadgets per page.

As long as one gadget is not cached, the response time will be above the 500 milliseconds
response time of the WaitGadget. However, when all gadgets are cached, one can see that the
cache performance cost plus any page overhead performance cost is very small; a page with all
cached gadgets responds in less than 100 milliseconds.

The cases tested in previous sections all forced no caching, simulating a worst case performance
scenario where all content and services are dynamic. This scenario could happen in real
deployments, but is less likely than a mixed case where some gadgets are cached. See Appendix
A for more information about caching.

The overall average performance of a real deployment depends on many factors, including the
distribution of response times for each user for each un-cached and cached gadget, and the
gadget utilization distribution in the profiles of each user personalized page and community. Use
of caching is likely to decrease the average response time of the system and increase the
scalability of the system in general because there is less processing and fewer slow gadgets are
in use, provided the caching strategy is appropriate. Generally deployments will use caching for
gadgets which have a long response time or consume large amounts of machine resources on
the gadget server. However, there will be important gadgets which must be dynamic, such as e-
mail gadgets.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 27

The data in Table 6 shows that the total response time difference between the case with one un-
cached gadget per page and the case with ten un-cached gadgets per page is about 45
milliseconds. This shows that the Parallel Portal Engine is efficient in that dynamic content can
be delivered almost as quickly as cached content.

The data shows that if all gadgets have the same response time, integrating dynamic content
rather than static cached content has a negligible effect on performance.8 However, if the
distribution of gadget response times for different users is large, then individual peak response
times could become unacceptable even though the average response time for a page is small.
This distribution will be very deployment- and gadget- specific.

The tests conducted illustrate the efficiency of the Parallel Portal Engine, and the Parallel Portal
Engine cache, which execute in parallel. The results show that because all requests, both
dynamic and cached, are executed in parallel, the overall response time for any page is at most a
few hundred milliseconds above that of the gadget with the largest latency, where cached
gadgets have a very short latency. While the exact performance values on real world systems
cannot be clearly characterized from this data, the results show that the Portal responds
efficiently to changes in how much content is cached, such that the real performance impact is
mostly independent of the Portal; it depends on the Gadget Web Services used and the caching
strategy followed.

Discussion of the Dependence of Response Time on the Fixed Value of Load Used

The scaling under load of the tested system is limited by Portal processor utilization. For loads
leaving the processor utilization below 100%, the response time is sub-second and the increase
over baseline in response time is at most (near peak) about 200 milliseconds. Additionally, the
curve is non-linear, such that response times for loads causing less than about 70% processor
utilization are less than about 100 milliseconds. This means that response time differences may
change slightly when running the test at a different fixed load, but that in an absolute sense
response times will always remain sub-second and the relative increases in response times due
to different parameter settings will still be on the order of 10 milliseconds, not 100 milliseconds.

8 This is not meant to suggest that caching is not important in the portal system architecture, merely to
suggest that caching alone will not improve real-world performance for end-users so long as some gadgets
are not cached. Use of caching can lower the overall average response time, depending on the gadgets
used and the details of the caching model. Caching will also significantly reduce load on the Gadget
Servers as well as network traffic, two factors that are vital to consider for scalable portal architectures.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 28

Conclusion

The metric WSPL, which measures the performance impact of aggregating many gadgets on a
personalized page, was measured to be 11 milliseconds per Gadget Web Service integrated.
This shows that the Parallel Portal Engine efficiently aggregates Gadget Web Services, and that
variations in real world user page performance due to users changing the number of Gadget Web
Services viewed per page is negligible. This behavior can be contrasted with that of portals using
serial Gadget Web Service processing, where WSPL is expected to be on the order of one half
second, reflecting absolute response times on the order of five seconds. The portal will thus
scale predictably and performance will be stable as more Gadget Web Services are integrated
into the system.

The metric WSCAL[n], which measures the performance impact of scaling the number of
accessed Gadget Web Services, was measured to be zero milliseconds per gadget web service
concurrently utilized, within error estimates, for n values 2, 5, and 10. The data shows that the
Plumtree Portal can scale to integrate at least 1000 Gadget Web Services with unchanged
performance. The Plumtree Portal system is thus easily adaptable to meet expanding business
needs, with no change to the Portal Platform system and no performance impact.

The effects on the conclusions above of changes in the number of cached Gadget Web Services
per page can be understood. The response time change of the personalized Portal pages due to
aggregating additional Gadget Web Services is negligible, whether the gadgets are cached or un-
cached, for a fixed set of average gadgets. The measurements made isolate the performance
impact due to the Portal Platform from that due to deployment caching strategy and Gadget Web
Service particulars, showing that the portal server itself is very efficient in managing cached and
un-cached web service aggregation.

The dependence on load per Portal server of personalized Portal page response time is small—
less than 200 milliseconds overall variation—for Portal servers which are not saturated. The
conclusions based on measurements of WSPL and WSCAL[n] can be extended to cover a wide
variety of real-world deployment scenarios because the Parallel Portal Engine efficiently
aggregates cached and un-cached content, and efficiently responds to increased load.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 29

Appendix A: Portal Side Remote Gadget Web Service Caching

The metrics measured use no caching of Web service content, as discussed above. In a real-
world case, some fraction of the remote Gadget Web Services utilized will be cached. Tests
showed that for the Plumtree Portal, caching does not significantly alter the portal personalized
page response times as long as there are some gadgets that remain uncached, so the metrics
measured are a good indication of real world portal performance.

Consider the possible caching models for Portals integrating remote Gadget Web Services:

• Portal content caching (PCC), which can be of two types: global portal content caching
(GPCC) or personal portal content caching (PPCC). Utilizing GPCC means that no
requests of the Web service for any content after an initialization request are required.
Utilizing PPCC means that a secure personalized cache is maintained by the portal. No
requests of the Web service for any content after an initialization request are required for
a particular set of personalization settings. Note that user authentication personalization
can be included in this definition, but is not necessary. GPCC and PPCC exhibit identical
characteristics in the model used for the benchmark. The net effect of realistic cache hit
rates will be reproduced by setting the relative number of Web services utilizing PCC with
those utilizing no caching.

• Web service caching (WSC). Utilizing WSC means that the portal always makes a
request to the Web service to determine if content has changed. If content has not
changed, then cached content is displayed. Note that for the purposes of this benchmark,
Web services utilizing WSC will cache all content. The net effects of un-cached
responses will be reproduced by setting the relative number of Web services utilizing
WSC and those using no caching.

• No caching. Utilizing no caching means that the portal always makes a request of the
Web service which always returns content for display.

One can model a distribution of caching models in use by changing the relative number of
aggregated remote Gadget Web Services utilizing no caching and the number utilizing and PCC.
This is a valid model because gadget side caching would be processed on a server remote from
the portal server, and so would behave like a Web service using no caching to the portal server.
The overhead on the portal due to making a request and receiving a 304 response (no content
change) is negligible for a fast network. Utilizing gadget side caching may allow the gadget to
respond more quickly than otherwise, but there are many factors which contribute to the overall
latency of the Gadget Web Service. It is reasonable to use the same response time as for
uncached gadgets; this models a real-world case of network or gadget application latency, as well
as a valid worst case scenario for complicated gadgets.

Designate a distribution of caching models by nucmc where n is the number of uncached gadgets
and m is the number of cached gadgets per page.

The dependence of the performance of the portal on the relative number of aggregated remote
Gadget Web Services was measured for 10uc1c, 7uc3c, 5uc5c, 2uc8c, and 1uc9c for the
Plumtree Portal My Page. These measurements utilized test 10 where the cache settings on the
gadget identification object in the Plumtree Portal were set appropriately.

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 30

Appendix B: LoadRunner Script Code

Initialization Script. The scenario initializes all vusers with this script before iterations begin.

#include "as_web.h"

vuser_init()
{
 // View the Login page for the Portal
 web_url("login.asp",
 "URL=http://ptwebserver3/portal45/admin/login.asp",
 "RecContentType=text/html",
 LAST);

 lr_think_time(3);

 // Create a parameter to hold the userid query string
 web_create_html_param("UserIDQS",
 "mypage.asp?",
 "&");

 // Login to the portal as a distinct user; it will re-direct to the user’s MyPage and
 // set the web parameter value
web_submit_form("dologin.asp",
 ITEMDATA,
 "name=UserName",
 "value={UserName}", //{UserName} is parameterized
 ENDITEM,
 "name=Password",
 "value=plumtree", //All users have fixed passwords
 ENDITEM,
 "name=selAuthSource",
 "value=10", //Set authsource to test group name
 ENDITEM,
 "name=Remember",
 "value=<OFF>",
 ENDITEM,
 LAST);

 return 0;
}

SCALABILITY AND TUNING STUDY

Copyright © Intel Corporation 2002.
*Third-party brands and names are the property of their respective owners. Page 31

Main Action Script. This is the action the scenario iterates.

#include "as_web.h"

Action1()
{

// Use the first URL in the command below to test the MyPage; comment out the second URL
// Use the second URL in the command below to test the Community Page; comment out the first
// URL

 // Request the user’s MyPage or Community Page
 web_url("mypage.asp",
 "URL=http://ptwebserver3/portal45/mypage/mypage.asp?{UserIDQS}&",
//"URL=http://ptwebserver3/portal45/communities/community.asp?{UserIDQS}&I
 ntCommunityIndex=0&intCurrentPageIndex=0",
 "TargetFrame=",
 "RecContentType=text/html",
 LAST);

 // Verify that the string “error” does not appear in the response
 web_find("ErrorSearch",
 "expect=notfound",
 "what=error",
 LAST);

 // Verify that the string “timeout” does not appear in the response
 web_find("TimeoutSearch",
 "expect=notfound",
 "what=timeout",
 LAST);

 return 0;
}

End Script. This is run after the test is completed.

#include "as_web.h"

vuser_end()
{

 //the following code logs the virtual user of the portal.
 web_url("dologoff.asp",
 "URL=http://ptwebserver3/portal45/admin/dologoff.asp?{UserIDQS}&",
 "TargetFrame=",
 "RecContentType=text/html",
 LAST);

 return 0;
}

